Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Basic Clin Pharmacol Toxicol ; 133(3): 265-278, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37312155

RESUMO

Inhalation studies are the gold standard for assessing the toxicity of airborne materials. They require considerable time, special equipment, and large amounts of test material. Intratracheal instillation is considered a screening and hazard assessment tool as it is simple, quick, allows control of the applied dose, and requires less test material. The particle-induced pulmonary inflammation and acute phase response in mice caused by intratracheal instillation or inhalation of molybdenum disulphide or tungsten particles were compared. End points included neutrophil numbers in bronchoalveolar lavage fluid, Saa3 mRNA levels in lung tissue and Saa1 mRNA levels in liver tissue, and SAA3 plasma protein. Acute phase response was used as a biomarker for the risk of cardiovascular disease. Intratracheal instillation of molybdenum disulphide or tungsten particles did not produce pulmonary inflammation, while molybdenum disulphide particles induced pulmonary acute phase response with both exposure methods and systemic acute phase response after intratracheal instillation. Inhalation and intratracheal instillation showed similar dose-response relationships for pulmonary and systemic acute phase response when molybdenum disulphide was expressed as dosed surface area. Both exposure methods showed similar responses for molybdenum disulphide and tungsten, suggesting that intratracheal instillation can be used for screening particle-induced acute phase response and thereby particle-induced cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Tungstênio , Animais , Camundongos , Reação de Fase Aguda/induzido quimicamente , RNA Mensageiro
2.
ALTEX ; 39(2): 322­335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35032963

RESUMO

On April 28-29, 2021, 50 scientists from different fields of expertise met for the 3rd online CIAO workshop. The CIAO project "Modelling the Pathogenesis of COVID-19 using the Adverse Outcome Pathway (AOP) framework" aims at building a holistic assembly of the available scientific knowledge on COVID-19 using the AOP framework. An individual AOP depicts the disease progression from the initial contact with the SARS-CoV-2 virus through biological key events (KE) toward an adverse outcome such as respiratory distress, anosmia or multiorgan failure. Assembling the individual AOPs into a network highlights shared KEs as central biological nodes involved in multiple outcomes observed in COVID-19 patients. During the workshop, the KEs and AOPs established so far by the CIAO members were presented and posi­tioned on a timeline of the disease course. Modulating factors influencing the progression and severity of the disease were also addressed as well as factors beyond purely biological phenomena. CIAO relies on an interdisciplinary crowd­sourcing effort, therefore, approaches to expand the CIAO network by widening the crowd and reaching stakeholders were also discussed. To conclude the workshop, it was decided that the AOPs/KEs will be further consolidated, inte­grating virus variants and long COVID when relevant, while an outreach campaign will be launched to broaden the CIAO scientific crowd.


Assuntos
Rotas de Resultados Adversos , COVID-19 , COVID-19/complicações , Humanos , SARS-CoV-2 , Síndrome Pós-COVID-19 Aguda
3.
Biochim Biophys Acta Biomembr ; 1863(1): 183499, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137304

RESUMO

With the intention to move away from animal testing for the toxicological evaluation of chemicals comes the need to develop new approach methodologies which are mechanism-anchored and target relevant key events leading to an adverse outcome. To date, no validated alternative methods are available for studying the acute inhalation toxicity potential of airborne chemicals but the constrained drop surfactometer measuring the surface tension of a drop of lung surfactant presents as a promising candidate. Indeed, the correlation of the increase in minimum surface tension of lung surfactant in vitro with changes in the breathing patterns of mice after inhalation of test compounds has been shown in multiple studies. However, the causal factors leading to lung surfactant inactivation remain speculative. This paper combines molecular and biophysical methods (constrained drop and captive bubble surfactometers, Langmuir-Blodgett balance, epifluorescence microscopy, cryogenic transmission electron microscopy, and differential scanning calorimetry) applied to purified porcine lung surfactant and dipalmitoylphosphatidylcholine interfacial films to gain insights into the disruption of lung surfactant function by three chemicals known to show acute inhalation toxicity (trimethoxyoctylsilane, methyl 3-oxo-2-pentylcyclopentaneacetate, and diisopentyl ether). The results of this study suggest that the test chemicals intercalate between the phospholipids at the air-liquid interface, reduce the stability of the films, and decrease the cohesivity of interface-associated multilayered structures thereby perturbing the lung surfactant surface activity. These findings contribute to a better understanding of chemically-induced lung surfactant function disruption.


Assuntos
Pulmão/química , Fosfolipídeos/química , Surfactantes Pulmonares/química , Animais , Suínos
4.
Part Fibre Toxicol ; 17(1): 16, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450889

RESUMO

Toxicity testing and regulation of advanced materials at the nanoscale, i.e. nanosafety, is challenged by the growing number of nanomaterials and their property variants requiring assessment for potential human health impacts. The existing animal-reliant toxicity testing tools are onerous in terms of time and resources and are less and less in line with the international effort to reduce animal experiments. Thus, there is a need for faster, cheaper, sensitive and effective animal alternatives that are supported by mechanistic evidence. More importantly, there is an urgency for developing alternative testing strategies that help justify the strategic prioritization of testing or targeting the most apparent adverse outcomes, selection of specific endpoints and assays and identifying nanomaterials of high concern. The Adverse Outcome Pathway (AOP) framework is a systematic process that uses the available mechanistic information concerning a toxicological response and describes causal or mechanistic linkages between a molecular initiating event, a series of intermediate key events and the adverse outcome. The AOP framework provides pragmatic insights to promote the development of alternative testing strategies. This review will detail a brief overview of the AOP framework and its application to nanotoxicology, tools for developing AOPs and the role of toxicogenomics, and summarize various AOPs of relevance to inhalation toxicity of nanomaterials that are currently under various stages of development. The review also presents a network of AOPs derived from connecting all AOPs, which shows that several adverse outcomes induced by nanomaterials originate from a molecular initiating event that describes the interaction of nanomaterials with lung cells and involve similar intermediate key events. Finally, using the example of an established AOP for lung fibrosis, the review will discuss various in vitro tests available for assessing lung fibrosis and how the information can be used to support a tiered testing strategy for lung fibrosis. The AOPs and AOP network enable deeper understanding of mechanisms involved in inhalation toxicity of nanomaterials and provide a strategy for the development of alternative test methods for hazard and risk assessment of nanomaterials.


Assuntos
Rotas de Resultados Adversos , Alternativas aos Testes com Animais , Nanoestruturas/toxicidade , Projetos de Pesquisa , Testes de Toxicidade/métodos , Animais , Humanos
5.
Small ; 16(6): e1904749, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31913582

RESUMO

Advanced material development, including at the nanoscale, comprises costly and complex challenges coupled to ensuring human and environmental safety. Governmental agencies regulating safety have announced interest toward acceptance of safety data generated under the collective term New Approach Methodologies (NAMs), as such technologies/approaches offer marked potential to progress the integration of safety testing measures during innovation from idea to product launch of nanomaterials. Divided in overall eight main categories, searchable databases for grouping and read across purposes, exposure assessment and modeling, in silico modeling of physicochemical structure and hazard data, in vitro high-throughput and high-content screening assays, dose-response assessments and modeling, analyses of biological processes and toxicity pathways, kinetics and dose extrapolation, consideration of relevant exposure levels and biomarker endpoints typify such useful NAMs. Their application generally agrees with articulated stakeholder needs for improvement of safety testing procedures. They further fit for inclusion and add value in nanomaterials risk assessment tools. Overall 37 of 50 evaluated NAMs and tiered workflows applying NAMs are recommended for considering safer-by-design innovation, including guidance to the selection of specific NAMs in the eight categories. An innovation funnel enriched with safety methods is ultimately proposed under the central aim of promoting rigorous nanomaterials innovation.


Assuntos
Ciência dos Materiais , Nanoestruturas , Segurança , Testes de Toxicidade , Simulação por Computador , Humanos , Ciência dos Materiais/métodos , Ciência dos Materiais/tendências , Nanoestruturas/normas , Medição de Risco
6.
J Toxicol Environ Health A ; 76(19): 1085-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24274150

RESUMO

Inhalation of ozone (O3), a highly toxic environmental pollutant, produces airway inflammation and exacerbates asthma. However, in indoor air, O3 reacts with terpenes (cyclic alkenes), leading to formation of airway irritating pollutants. The aim of the study was to examine whether inhalation of the reaction products of O3 and the terpene, limonene, as well as limonene and low-level O3 by themselves, induced allergic sensitization (formation of specific immunoglobulin [Ig] E) and airway inflammation in a subchronic mouse inhalation model in combination with the model allergen ovalbumin (OVA). BALB/cJ mice were exposed exclusively by inhalation for 5 d/wk for 2 wk and thereafter once weekly for 12 wk. Exposures were low-dose OVA in combination with O3, limonene, or limonene/O3 reaction products. OVA alone and OVA + Al(OH)3 served as control groups. Subsequently, all groups were exposed to a high-dose OVA solution on three consecutive days. Serum and bronchoalveolar lavage fluid were collected 24 h later. Limonene by itself did not promote neither OVA-specific IgE nor leukocyte inflammation. Low-level O3 promoted eosinophilic airway inflammation, but not OVA-specific IgE formation. The reaction products of limonene/O3 promoted allergic (OVA-specific IgE) sensitization, but lung inflammation, which is a characteristic of allergic asthma, was not observed. In conclusion, the study does not support an allergic inflammatory effect attributed to O3-initiated limonene reaction products in the indoor environment.


Assuntos
Poluentes Atmosféricos/toxicidade , Alérgenos/toxicidade , Cicloexenos/toxicidade , Inflamação/patologia , Ozônio/toxicidade , Terpenos/toxicidade , Administração por Inalação , Animais , Asma/induzido quimicamente , Asma/imunologia , Peso Corporal , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Feminino , Imunoglobulina E/sangue , Inflamação/induzido quimicamente , Inflamação/imunologia , Limoneno , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/efeitos adversos , Ovalbumina/imunologia , Testes de Toxicidade Subcrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...